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ABSTRACT 

The nonlinear mechanical properties of a unidirectional, glass fiber- 

epoxy composite at l6k  F are characterized by using creep and recovery 

tests together with a constitutive equation based on a thermodynamic theory. 

Our experimental effort covers studies on specimens with fiber orientations 

at 6 = 0°, 30°, U50, 60° and 90° with respect to the uniaxial loading 

direction. The results for 6=0 specimen show that the composite is 

linearly elastic for the load range studied, but nonlinear viscoelastic 

behavior is observed for the other orientations.  Guided by the nonlinear 

constitutive equation, the creep and recovery data are plotted on double- 

logarithmic paper, and the material properties are found by shifting the 

data to form a "master curve" for each fiber orientation. Prediction of 

master curves of 0 = 1+5 and 60 from master curves of 6 = 0 , 90 and 30 

is made. Four principal creep compliances are estimated by using the 

master curves and tensor transformation relations. Finally, we use the 

nonlinear equation to predict strain response due to multiple-step loading 

and unloading. 

The Appendix contains two abstracts of papers which were completed and 

published during the period covered by this report. 
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Section I 

INTRODUCTION 

Nonlinear viscoelastic behavior of a unidirectional, glass fiber-epoxy 

composite under controlled loading and at approximately l6h  F and 21$ 

relative humidity is studied.  The nonlinear constitutive equation which 

is used here has been derived from thermodynamic theory [l]* and is similar 

to the Boltzmann superposition integral of linear viscoelastic theory. 

Special cases of this nonlinear theory have been applied with limited 

success by other investigators to characterize monolithic polymeric 

materials.  For example, Leaderman proposed and applied to fibers a so-called 

modified superposition principle (MSP) [2].  Recently, Findley and Lai [3] 

used a MSP to predict strain response of unplasticized PVC to discontin- 

uously applied tensile and shearing stresses.  In a more recent paper [k] 

the various nonlinear theories are reviewed, and the type of theory used 

here is applied to experimental data on different materials under controlled 

loading and controlled straining. 

In Section II, linear and nonlinear constitutive equations for uniaxial 

loading are given. An equation for the average octahedral shear stress in 

the epoxy matrix is also derived for later reference. 

The specimen and experimental equipment are described in Section III. 

Creep and recovery data for various loads and fiber angles are then given. 

It is shown, using the nonlinear theory, that a graphical shifting procedure 

* Numbers in square brackets indicate references at end of report. 



can be used to reduce both the nonlinear creep and the recovery data 

plotted on double-logarithmic paper.  This procedure provides master curves 

which, for the creep period, are simply the time-dependent linear visco- 

elastic creep compliances.  Stress-dependent nonlinear properties are 

determined by the amount of vertical and horizontal shifting needed to form 

the master curves; we find these properties depend primarily on the average 

octahedral shear stress in the epoxy.  How well data form master creep and 

recovery curves provides an indication of the validity of the theory. The 

results reported herein do indeed verify the theory in that good master 

curves are obtained.  Prediction of linear viscoelastic compliances at 

0 = 1+5° and 60° from the curves of 0 = 0°, 90° and 30 , are then made by 

using tensor transformation relations. 

In Section IV the principal creep compliances are estimated.  Finally, 

strain response due to multiple-step loading is predicted in Section V 

using the nonlinear constitutive equation and the material properties found 

from creep and recovery data.  Good agreement between theory and experiment 

is achieved during most of the time range covered. 



Section II 

CONSTITUTIVE THEORY 

l".   LINEAR CONSTITUTIVE EQUATION 

The Boltzmann superposition integral can be used to represent the 

stress-strain relation for linear viscoelastic materials. Strain response, 

e, to an arbitrary stress input, a,   is 

e = /* A(t-T)|2.dT (la) 
O UT 

or, equivalently, 

e = A(0)o + /* AA(t-x)§2-dT (lb) 
O IT 

where A(t) is the creep compliance; it is defined as the strain output due 

to a unit step stress input, a = H(T), and 

0 T < 0 
H(T) = { (2) 

1 T > 0 

The range of integration in (l) includes the stress discontinuity that 

occurs at t = 0 in a creep test.  A(0) is the initial value of creep compli- 

ance and M(t) is the transient component of creep compliance, AA(t) = 

A(t) - A(0). 

The linear viscoelastic compliance A(t) is a function of the angle 

between fiber and loading axis, 6.  Later, we shall use the notation A 



to bring out this angular dependence. 

When a constant stress a    is applied at t = 0 and removed at t = t,, 
o 1 

viz. , 

a = OO[H(T) - Hd-^)] (3) 

we have a so-called "creep and recovery test." 

Substituting (3) into (lb), the stress-strain relation for the creep period, 

0 < t < t ,is 

e = A(0)a + AA(t)o = A(t)a (U) 
o       o       o 

while during recovery, t > t   , it is 

e r = e(t) - e(t-t1) (5a) 

or, equivalently, 

e = [AA(t) - AA(t-t )]o (5b) 
r 1  o 

In (5), e is the strain measured after the removal of the stress, and e(t) 

is the creep strain for t > t which would exist if the stress had not been 

removed at t = t .  The familiar relation between creep and recovery pre- 

dicted by equation (5) for a linear viscoelastic material is shown in 

Figure 1. 
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Figure 1. 

Relation Between Creep and Recovery 
for a Linear Viscoelastic Material 



2.   NOKLINEAR CONSTITUTIVE EQUATION 

The nonlinear constitutive equation derived in [l] is 

t       dg?° 
e = g A(0)a + g., / AA(IMJ' )-:— dx (6) 

O X o W-T 

where A(^) = A(0) + AA(i^)  is still the linear creep compliance and ty 

is the so-called "reduced-time" defined by 

i>  = /* dx'/a Ja(x')] (7a) 
o     ° 

*• = ^(T) = /T dx'/a [a(x')J (7b) 
o      ° 

and the material properties g , g , g and a are functions of stress in- 

put.  When the material is loaded within the linear range, g = g = g = 

a = 1, and equation (6) becomes the Boltzmann superposition integral (l). 

The modified superposition principal proposed by Leaderman [2] can be 

derived from equation (6) by setting g = g = a = 1; it is 

t       dg?° 
e = A(0)a + f    &A(t-T)-~- dx (8) 

o        dx 

The thermodynamic significance of changes in g , g and g is that 

they reflect third and higher order stress dependence of the Gibb's free 

energy, while a arises from similar strong stress effects in both entropy 

production and free energy. 

When a step stress input a - a   [H(T) - H(x-t )] is applied, equation 

(6) yields, 



e = gQA(0)% + 5^2  A(I~)ao '  ° < * < *1     (9a) 

er = gg[AA(*) - AA(tp-lpi)]ao ,  ^ < t :9b) 

where in (9b) 

*1 = tl/3ka  ' * = tl/aa + t_tl 

Notice that e s e]L = gQA(0)ao + g^AA^^c^ immediately before the 

load is removed, and e = e' = g?AA(f )a immediately after the load is 

removed.  Therefore the jump in strain at t = t is 

Ae, = e.-E* = g A(0)o + (g -l)g AA(*,)a 
1   1 1   o    o    J-   ^   xo 

(10) 

It is important to notice that the strain jump at t = 0, e(0) = gQA(0)ao 

is not necessarily equal to the jump at t = t , Ae1«  It is clear from 

equation (10) that these two jumps are equal only when g][ = 1; the linear 

viscoelastic material has the same jump in strain during both loading and 

unloading since g = 1 in the linear range. 

3.   OCTAHEDRAL SHEAR STRESS 

The linear viscoelastic creep compliances are the only time-dependent 

material properties in the theory used here.  Other material properties are 

stress-dependent functions, and from our experimental results we find that 

they can be expressed approximately as a function of a single invariant: 

the average octahedral shear stress in the epoxy matrix.  That the octahedral 



shear stress is the main function needed to characterize nonlinear behavior 

is suggested by multiaxial creep data on plastics and metals [h].     For 

later reference purposes, ve shall develop this invariant here in terms 

of applied stress and fiber angle. 

Octahedral shear stress is defined as the shear stress which acts 

on a plane whose normal makes equal acute angles with the positive princi- 

pal stress directions.  It is [5] 

T  , =h(a-a)2  + (a0-oJ
2+ (a^o)2]1/2 (ill 

oct  3LV 1 2 "2    3' 3 1' 

where a , a and a    are the principal stresses. 

Consider now a composite specimen with fiber orientation 6, under a 

uniaxial stress a, which is shown in Figure 2.  The average (applied) 

stresses normal to the fiber, a , and along the fiber, a^,  and also the 

average shear stress along the fiber, x , are found using the usual tensor 

transformation relations: 

o=o sin20 (12a) 

al = o  cos 2e (i2b) 

T  = I sin2e (12c) 
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Figure 2. 

Diagram for Derivation of Octahedral Shear Stress 



The average stress state of the matrix element is plane stress; viz. 

o    = x  = T  =0.  Furthermore, if we assume the fibers are so relatively 
z   xz   yz 

stiff that e     - 0, the average stress on the matrix 
X 

element < iue to a 

becomes. 

ay = °f 

a = v a = v a^ 
x   e y   e f 

Txy = Tf 

(13a) 

(13b) 

(13c) 

where v 
€ 

is defined as the ratio a /a • it x f is equal to the matrix 

Poisson' s ratio in the linear range only. However, it turns out the result 

is quite insensitive to v , and therefore the linear elastic 
e 

value will be 

used in reducing our data. 

Octahedral shear stress is found from the stresses (13) and equation 

(11) to be 

^~  r 2 ^  2il/2 
Vt = ^  [of + YTf] CUa) 

where 

3 (lUb) Y ~ 1 - v + v2 
e   e 

We find Y has a maximum value of h  when v 
e = 0.5. 

Bee ause the fibers are not infinitely rigid, e^ is not actually zero. 

Instead, it equals A,,a' + A,^a.»and corrected stresses on the matrix 1     11 f   12 f 

element are 

10 



a    = a (15a) 
y       f 

a    =  (E Anncot2e + E A10 + v   )a    = v    a_ (15b) 
x e  11 e 12 e    i ei   i 

T    = T„ (15C) 
xy   f 

where  v  = E An1cot
26 + El, + v 

ef   e 11       e 12   e 

E is the modulus of the epoxy, and A  and k±2  are principal composite 

compliance components along the fiber and transverse to the fiber, re- 

spectively. 

The same octahedral shear stress form (1)4) is obtained by using the 

stress distribution (15) and equation (11), except the effective Poisson's 

ratio v ,. is used instead of the epoxy Poisson's ratio v . 
ef e 

If we use typical epoxy properties 

v = 0.35 E = 0.5 x 106 psi 

and the composite properties which we will find later from our experimental 

data (A  = .l8U x 10~6 psi"1 and k±2  = -.057 x 10"6 psi"1) it is found that 

Y = 3.88 when v is used.  For the specimens studied, the biggest error in 
e 

Y due to the use of v instead of v . is 2.1$ which occurs when 0=^5 • 1 e ef 

This small amount of error in y  affects the octahedral shear stress only 

slightly, so that the equation (lU) will be used.  We should add that a 

quantity a   , 

0    = T_ ^-= [al  + YT2]
1/2 (16) 

e oct fg-      L f  ' f 

11 



will actually be used in reducing data, for convenience.  This invariant 

is sometimes called the effective stress.  It is observed that a = a 
e   f 

---hen the matrix itself is under a uniaxial stress equal to o . 



Section III 

EXPERIMENTAL WORK AND DATA REDUCTION 

1.   SPECIMEN AND EQUIPMENT 

The contracting agency supplied the unidirectional, glass fiber-epoxy 

composite material.  It was fabricated by contacting eight plies for five 

minutes and then applying a pressure of 25 psi for 35 minutes.  A tempera- 

ture of 330 F was maintained throughout the pressure cycle. 

The composite has a density of 1.67 g/c.c, 62.1* weight percent fiber, 

and 1+7.6 volume percent fiber. 

Five sets of specimens, with 6 equal 0, 30, 1+5, 60, and 90 degrees, 

were cut to the nominal dimensions of 1/2" x 1/10" x 6" from the same large 

plate.  Three specimens were cut at each angle.  One of them 3erved as a 

dummy to compensate the thermal expansion of the strain gage used, and the 

other two specimens were both tested in the test program of one hour creep 

and two hours recovery.  Some difference was found between the specimens, 

mainly in the initial (elastic) response; since the largest difference in 

elastic response was found to be only 3.1+$, which occured for 8 = 30°, data 

from one specimen at each angle was chosen for data reduction purposes. 

The equipment used is shown in Figure 3.  A Develco Environmental 

chamber is shown inside the ARA* loading frame toward the right center. 

Two Budd Model TC-22 Digital Strain indicators are used to record strains, 

and they are shown in the left center.  A Bristol temperature and humidity 

controller is on the right side while on the left side is the control nanel 

* Allied Research Associates, Inc. 

13 



Figure 3 

Testing Equipment 

14 



of the MA Precision Pneumatic Testing Machine.  A nitrogen tank is shown 

at the left corner to supply pneumatic pressure for the ABA Testing Machine, 

which has a loading capacity of l800 pounds. 

In Figure h,  a close-up view of the specimen inside the chamber is 

shown; the specimen is arranged vertically between grips.  (A plate in the 

background makes the specimen appear to be bent). 

Two BLH* strain gages (FAER-25R-35-S13) are mounted on the specimen. 

They are placed along the longitudinal direction of the specimen, one on 

each side and connected in series to average out the bending.  For 0 and 90 

degree specimens, an additional gage is placed along the transverse direc- 

tion to measure the transverse strain directly.  Each gage has high resis- 

tance of 350 Ohms.  Eastman 910 is used as the bonding agent, which has a 

maximum allowable temperature of 250 F. 

It was found that during the early testing period of each specimen 

the strain due to a given load decreased with successive tests.  After 

five to ten cycles repeating the loading and unloading process, the speci- 

men became stable in creep compliance.  For example, a stress of 2690 psi 

was applied to condition our 60 degree specimen.  We found that total 

strain output under a one hour loading creep test is reduced by 3%  after 

several cycles. 

This reduction in compliance may be due to the arrest of cracks which 

form in the matrix under initial load application.  That cracks do indeed 

develop in the rigid matrix has been discussed by Halpin [6]. 

* Baldwin-Lima-Hamilton Corporation 
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Figure k 

Specimen Inside the Environmental Chamber 
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2.   EQUATIONS FOR LINEAR VISCOELASTIC COMPLIANCES 

For a linear viscoelastic material under constant stresses, and 

in a state of plane stress in the x-y plane, the strain-stress relations 

for any fiber orientation, 6, relative to the x axis are 

Ex ' All°x + A12°y + Ai6Txy (l7a) 

y 
e = A21°x + A22°y + A26Txy (l?b) 

Y  = Aj.„a._ + A^a__ + AJ^^T  (17c) 
'xy " *6l x T "62  y T "66 xy 

(In all of our discussions the fibers are assumed to be in the x-y plane., 

The elements A!  are the creep compliances at this particular value 

of 0.  They form a fourth order tensor, so that the relation between the 

creep compliances of different fiber orientations 9 follows the usual 

tensor transformation law [7]. 

For a state of plane stress, only four principal creep compliances 

A   A   A  and k,,  are needed to characterize the composite; the prin- 
11'  12'  22     66 

cipal directions are parallel to and normal to the fibers.  When the x-y 

axes are these principle axes, the stress-strain relations become 

Ex = All°x + A12°y UOa; 

r = A o + A a (18b) Cy  A21°x   22 y 

Y   = A,,T (iQc: 
'xy   66 xy 

17 



Pagano and Halpin [8] derived an axial compliance of a tensile speci- 

men which is clamped at both ends: 

T2 
ftlx*    A '  + A ' 2 iL_ _ Chi 

A - e - A. r 11 66 + All h?  ""161        ,ln, 
0 f^A' A'  + A' 2 L£ 6A11A66 + All b2 

where A' , AV and AJ-^ are the components of the creep compliance tensor 

at this angle 9, while 2L and 2h are the length and width of the specimen, 

respectively; the complexity of this equation results from specimen bending 

when 8 =f 0 and G =f 90 .  If the specimen is sufficiently long compared to 

its width (— << l), equation (19) becomes 

A0 '=  f a Ail (20) 

This approximation will be used in all of our data reduction of linear and 

nonlinear data, and will be verified numerically later in the paper. 

3.   0 DEGREE SPECIMEN 

Negligible creep has been found when loaded along the fibers (9=0) 

at l6k  F and 21$ relative humidity, with a stress range from 1376 psi to 

6881 psi.  The axial strain output e  due to uniaxial loading o = a     is 

linearly elastic, which is shown in Figure 5.  The directly measured axial 

compliance, A , is equal to the principal creep compliance A  , 

£ 
A,n = A = — = .18)4 x lCf6 (psi-1) 
ii     O    CF 

X 

The lateral strain e  due to the axial stress a     is also found to 
y x 

be linear and independent of time; from equation (l8b) the principal creep 

compliance A  is 

A21 = ö2" = " *06° X  10"6 ^Psi_1) 
x 

18 
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The Poisson's ratio of the composite transverse to the fiber is 

e 
v  = _ -£ = .327 
21    t    ° ' 

o 

h.        OFF-ANGLE SPECIMENS 

The analytical expression for the nonlinear creep compliance at any 

angle is obtained from equation (9a), 

AenE-a-=goV0) +«162^e(*) (21) 

where, for constant stress, T/J = t/a 
a 

In another paper [k]   a method for evaluating all property functions 

in (2l) from creep and recovery data is given.  Depending on whether or 

not AA (i|>) is a power law, somewhat different approaches are needed. 

Notice that when it is a power law, viz. 

AAQU) = c*n (22) 

where c and n are constants, equation (2l) yields 

A0n-=^0) +c^tn (23) 
a 

a 

This shows that creep data will provide information for evaluating the 

combination g g /a , but not g,g^  and a  separately.  It turns out that 

the power law can indeed be used to fit our data.  This power law repre- 

sentation has been reported for many plastics and metals [9]. 

a.  Initial Compliance 

In principle, creep data can be used to evaluate g and A(0) in 

equation (23); recall that g = 1 under sufficiently small stresses, and g 
o • o 

therefore represents nonlinearity that may exist in the initial compliance. 

20 



However, we were unable to measure strain at a short enough time to obtain 

the initial compliance directly from the data in the nonlinear creep range 

of behavior. As a result, the following method was used to estimate the 

initial compliance. 

For each fiber angle studied, we found our first strain reading (at 

approximately t = 3 seconds) is linear in stress when the stress is 

sufficiently small; this is approximately the same range for which recovery 

equation (5) is found to hold. The slope of this 3-second curve is assumed 

to be the initial creep compliance A(0).  Motivated by the nonlinear creep 

behavior reported in [lO] for a fiber-reinforced phenolic resin, in that 

g = 1 for all applied stresses, we assume this is also the case here, 
o 

Graphs of the initial strain, e(0) = A(0)o are shown in Figure 5-  (The 

solid points are some measured values, while the open points are esti- 

mated values using the constant initial compliance and each stress value 

applied in the test program).  The initial creep compliances, as given by 

the slopes of these lines, are 

A (0) = O.UlO x 10"6 (psi-1) 

A,s(0) = 0.600 x 10~6 (psi-1) 

A,rt(0) = 0.668 x 10"
6 (psi-1) 

60 

Ann(0) = 0.61U x 10~
6 (psi-1) 

It is found that when the initial compliance determined above is sub- 

tracted from the total compliance,A  , the power law shown in (23) results. 

Even if our estimations of initial compliances are not valid for very short 

times, they should be acceptable as long as prediction of very short time 

response is not required for the engineering application of interest. 

When 8 = 90°, the initial creep compliance is equal to the principal 

compliance Ap2(0), 

21 



A22(0) = A90(0) = 0.61U x 10"
6 (psi 1) 

Further, the lateral strain measurement e due to a sufficiently small 
x 

axial stress a  normal to the fibers (6 = 9-0) gives the principal creep 

compliance A _ by using equation (l8a).  For the entire stress range 

studied, A  is found to be essentially independent of time and stress, 

with the value 

A,0 = — = - 0.051* x lO-6  (psi-1) 
12       a 

The initial Poisson's ratio of the composite for loading normal to fibers 

is found experimentally as 
e 

v  (0) = - — = 0.088 
J.2 £ 

o 

Theory shows that A.. _ = A  [ll].  However, we reported previously 

that A  = - .060 x 10 G (psi 1)", the approximately 10J? difference between 

A  and A  can be attributed to experimental error, considering the very 

small strains involved.  The average value will be used in characterizing 

the material, 

Al? = A?l = " ,057 X 10~6  (Psi_1) 

The initial compliances are plotted against fiber angle in Figure 6; 

also shown is the one-hour compliance which will be discussed later. 

In this Figure, compliances at 0 = 0 , 90 , and 30 were used in fourth- 

order tensor transformation relations to predict compliances at 0 = h^ 

and 60 .  Also shown are data for a second set of specimens, which brings 

out the specimen-to-specimen variation that exists, even though they are 

all cut out of the same plate.  It is seen that noticeably better prediction 

of the ii5 and 60 compliances would have been obtained if the larger 

compliance at 30  (solid point) had been used. 
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Some of the error in these predictions is probably due to inhomo- 

geneity in the plate, as well as our method of estimating initial compliance. 

b.  Reduction of Creep Data 

Most nonlinearity and creep occurred for the 30 specimen.  We shall 

therefore use this fiber angle to discuss the details of data reduction. 

Creep and recovery data on this specimen are shown in Figure 7.  For 

comparison purposes we note that the ultimate tensile strength at 30 is 

approximately 10300 psi, and the material is nonlinear for a  > 2000 psi. 

Equation (21) can be rewritten as 

M9n = A6n " V0) = «l«2
AA8(t/aa) ^ 

and 

logAA  = log g g + logAAfi(t/a ) (25) 
on       Id t)   ö 

where AA  is the transient component of the nonlinear creep compliance, 

AA is the transient component of the linear creep compliance, and we have 

assumed g =1. 

We have plotted AA  against t on double-logarithmic paper 

in Figure 8.  Nearly parallel straight lines are shown for different stress 

levels, with only a small slope difference existing at the lowest stress 

level (2069 psi).  Linear viscoelastic relation (5) is found to be valid 

at this lowest stress, for which the material is considered to be approxi- 

mately linear; we shall assume the material is linear for all stresses 

0 <_ 2069 psi.  Recording error for the small strain output at low stress 

and the method used to estimate initial compliance might have caused the 

observed difference in slope. 
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It is clear that the data at different stress levels can he shifted 

along the two axes to a parallel straight line near the line at the lowest 

stress level, which is shown as the broken line in Figure 8.  It is the 

so-called master curve, and is assumed to be the transient component of 

the linear viscoelastic creep compliance. 

The amount of horizontal (t) shift and vertical (AAQ ) shift equals 

log a and log g g0 respectively.  Since the lines at different stress 

levels are parallel, straight lines, it is obvious that we cannot obtain 

unique values for a and g g from the shift of the creep data; had curva- 

ture been found, the vertical and horizontal shifts would have been deter- 

mined uniquely. 

Additional information will be provided by recovery data in order 

to evaluate unique values of a and g^, and also g-j^ and g2 separately; 

this will be discussed in the next subsection. 

Smaller nonlinearity is shown in Figure 9 for 0 = 90 .  Parallel, 

straight lines are also found for the creep compliance data at different 

stress levels for 0 = 90°, as well as 0 = U5 and 60 . 

c.  Reduction of Recovery Data 

The nearly parallel, straight lines on double-logarithmic paper shown 

in Figures 8 and 9 indicate that the power-law form can represent the 

linear creep compliance; namely, 

Ae = Ae(0) + AAQ(^) = A0(O) + ci|»n (26) 

27 
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where tjj = t/a is stress-reduced time and c and n are independent of stress 

and time. 

Substituting this power law (26) into equation (9b) yields 

er = g2[c^
n - c(^1)

n]ao , t > t± (27) 

and we derive the equation for normalized recovery strain 

e 
r = ^-[(1 + a Xf  - (a A)n] (23) 

where 

Also 

AE1  gl 

log(^f-) = -log &1  + log[(l + aaA)
n - (aaA)

n]   (29) 

AE1 = e^i^ " e^ ~ g±&2Q^± °o 

is the transient component of strain existing immediately before the 

stress is removed. 

Rewriting equation (28) we have, 

e. 

'1 

It is clear from equation (29) that a graphical shifting procedure 

can be applied to recovery data to determine a and g  for different stress 

levels.  For Q  = 30 , it is estimated that n = .1^5 from Figure 8.  A 
e 

reference curve of normalized recovery strain -— is plotted against A 
Ae, 

on double-logarithmic paper by letting a = g = 1 in equation (29).  This 

reference curve is the normalized recovery strain for a linear viscoelastic 

material; it is shown as the solid line in Figure 10.  Four normalized 

recovery curves of different 3tress levels are also shown in broken lines. 

It appears that they can be superposed on  the reference (linear viscoelastic) 

29 
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curve by translating them along two axes, the amount of horizontal (A) 

shift (to the left) and vertical {-—-) shift (up) is equal to - log a^ 

and log g , respectively. 

Since the curves shown in Figure 10 are not straight lines, unique 

values of aa and g. can be obtained by the shifting technique.  After 

shifting, some of the data points for four different normalized recovery 

curves are shown as solid points on the reference curve. The ability to 

shift the data to the reference curve provides a check on the theory. 

The normalized recovery curve for the lowest stress level (2069 psi) 

is not shown in Figure 10 since it was found to lie approximately on the 

curve of 3h60  psi, and not on the reference curve.  However, this does 

not mean the material is nonlinear at 2069 psi.  Recall that the actual 

slope of the transient component of creep compliance at 2069 psi is not 

the same as the master curve in Figure 8; by using the actual slope of 

this creep compliance (n = 0.187) for predicting the reference recovery 

curve, we found that the measured recovery curve at 2069 psi lies approxi- 

mately on this new reference curve; this result shows, therefore, that 

the material is essentially linear at the lowest stress of 2069 psi. 

Given the values of log a from the recovery Figure 10, the creep 

curves in Figure 8 are shifted this distance to the right.  The additional 

amount of vertical shift needed to place each creep curve on the master 

curve (dashed line) gives the value of log g^gg.  Knowing g±  from Figure 10, 

we then determine the value of g2 at each stress. 

This shifting procedure has been carried out for each stress level 

and fiber angle tested.  The nonlinear properties are plotted in Figures 

11, 12 and 13 against the "effective stress," ag, equation (l6), which is 

31 
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proportional to the average octahedral shear stress in the matrix.  The 

constant value v = 0.35 was used to evaluate y =  3.88, as discussed in 
e 

Section II-3.  The fact that most of the data fall on a single curve in 

each Figure indicates that a    is the principal factor causing nonlinearity. 

'iince g > 1 in Fig-ore 13, the jump of strain when t = t is larger 

than that when t = 0; i.e.  Ae > g A(0)a  in equation (10). 

The linear dependence of log a on a seen in Figure 11 at high 
a    e 

stresses is especially interesting.  This is the same behavior observed 

earlier for a glass-reinforced phenolic [k];  the fibers were in an orthog- 

onal array, so that shear stress along the fibers, rather than o , was 

found to be the principal invariant.  This linearity in Figure 11 for the 

larger values of a    implies that 

a =* Ae  e 
a 

where A and B are positive constants.  Exponential dependence is suggested 

by Eyring's rate process theory for high stresses when all nonlinearity is 

due to a [9], but this molecular model is too simple to account for g^ and 

The transient components of recovery data are plotted against linear 

time scales in Figures 1^ and 15 for the largest stresses applied at 

9 = 30° and 90°.  The accuracy of the recovery prediction is an indication 

of how close the shifted recovery data in Figure 10 are to the solid line. 

The modified superposition theory prediction, equation (8), was also made; 

note that equation (5a) can be used instead to make this prediction since 

it is valid for nonlinear behavior (g_ 4 l) when g = g = ao = 1.  Total 

strain using (5a) is shown in Figure 7.  These results indicate that the 

modified superposition theory of Leaderman predicts recovery which is too 

rapid. 
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d.  Prediction of Creep Compliances 

For the specimens 0 = 90 , 1+5 , and 6o , we found that the material 

is approximately linearly viscoelastie up to stresses of 2079 psi, 2069 psi 

and 131+5 psi, respectively.  For the linear range, fourth order tensor 

transformation relations will be used to predict compliances at 6 = 1+5 

and 60 given data at G = 0 , 90 , and 30 .  In order to predict compliances 

at higher stresses, one would simply bring in the values of g , g and a 

along with (9a); if all data points in Figures 11 and 12 were on a single 

curve, rather than being somewhat scattered, the predictions in the non- 

linear range would be as accurate as in the linear range. 

First, we record the linear creep compliances found experimentally. 

They are 
A = .181* x io~6 
o 

A       =   [.6lk +   . 081+4;-ll+5] x 10"6 

A       =   [.1+10 +   .062iiTll+5] x 10"6 

A)     =  [.600 +  .0974''132] x 10~6 

A6o =  [.668 +   .107^'172] x 10~6 

(psi 

(psi" 

(psi 

(psi" 

psi 

(30) 

where \p  is stress-reduced time in hours; recall for the linear range a = 1, 

so that \p =  t. 

The transient components of the creep compliances (AA =A.(t|>) - An(0) = 0   9      6 

cip ) have been plotted against i>  on double-logarithmic paper in Figure 16. 

Since A  are fourth order tensor components, the standard transforma- 

tion relations [7] give 

AQ = (m" - 3m
2n2)Ao + (n* - 1/3 m

2n2)A90 + ^ m2n2A3Q    (31) 

where 

m = cosG, n =-sin6 
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When  8  =  »+5° and   6C°,  v ,  we  nave 

-A i \     + I 
»5       3     30 ~ 2    o       6 "90 %  =  3No-2Ao+7TAon (32a) 

A60=A30-2Ao+2A
90 (32b) 

By using the data obtained for AQ, A^, A^ and equation (32), we 

predict A^5 and A^. They also have the power-law forms, 

Ak5  = f-557 + .096V11'5] x 10"6 ipsi 
(33) 

A6o = [-625 + -1(W1145] x  10_G  (psi-1) 

The transient parts of the predicted A,'  and A'  are shown in broken 
*0       bo 

lines in Figure 16 to compare with the experimental results - compare also 

equations (33) with (30).  For further comparison, 1 hour data of Figure 16 

are plotted against fiber angle, 0, in Figure 6. 

Part of the observed error is probably due to experimental errors and 

the lack of material homogeneity of the sheet from which the specimens were 

cut; also, small errors in the original estimates of initial compliances 

produce relatively large errors in the transient components, and could be 

one cause of the differences in slopes in Figure iß. 
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Section IV 

PRINCIPAL CREEP COMPLIANCES 

It was mentioned, previously in Section III-2 that the principal creep 

compliances An, and A  are directly determined, from axial strain rneasure- 
11     22 J 

ments under uniaxial step stress input along the fibers and normal to the 

fibers, respectively; and the third principal creep compliance, A  , can be 

measured by a strain gage placed transverse to the loading direction on a 

0 or 90" specimen.  They are found to be independent of stress and have 

the values, 

A  = A = .181+ x 10~6 (psi-1) 

A22 = A90 = C'6l)| X •OÖ'4*'ll+5J x 10~6    (psi"1)   (3,4) 

A12 = A21 = " *05T X 10"6 (psi_1) 

The fourth principal creep compliance krc  can be calculated by using 

the data of A  , A  , A  and A  ,  and the standard tensor transformation 

relation [?]: 

A66 =rA30- 3A11- 2A12"f A22 (35) 

The resulting four principal creep compliances are plotted against 

log i|; in Figure 17-  These four compliances completely characterize linear 

viscoelastic behavior under all states of plane stress. 

Earlier we said equation (20) is only an approximation because of speci- 

men bending that exists with off-angle specimens.  Now we want to check this 

approximation.  By using the principal data and tensor transformation 

)4l 
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relations we can calculate the compliance A^, which would he measured if 

the material really had the principal creep compliances above. It appears 

that the approximation is very good, with the directly measured value 

A   as shown in Table 1. 

Table I 

Comparison of the measured and calculated A_Q. 

* Measured A      x ±U" uaicuiaLea K       A XU 

(Hrs) (psi)"1 (psi)"1 

0 .1+10 .1+07 

1 .1+72 .1+68 

20 • 507 .502 

200 .5^7 .5^1 

1+3 



Section V 

MULTIPLE-STEP LOADING 

The nonlinear theory has been successfully applied to creep and 

recovery data reduction and prediction in the previous Sections.  This 

theory will now he used to predict response under multiple-step loading 

and then compared to test data for the 6 = 30 specimen. 

The constitutive equation (6) is used to make this prediction, 

dg^a 
e = g A(0)a + g., /  AA(>i-<K)~- di 

O In dt 
(C, 

waere 

V = / di/a 

The two-step loading and two-step unloading program shown in Figure 18 

was chosen. 0 A 

°2 
=  2a 

0 *2    S 

Figure 18 

Multiple-Step Loading Program 

The stress input function go has the form, 

K?°  = ß^l11^ + (g2°2 - R2
l0l)H(T~tl) 

-(g2a2 - g^0l)H(T-to) - RkH(T-t,) (36) 

hh 



The related nonlinear properties a , g1 and gg have a similar form; for 

example, 

a = 1 + (a1 - 1)H(T) + (a2 - a^Hd-t ) 
a       a a        o x 

-(a2 - a1)H(x-t9) - (a* - 1)H(T-0        (37) 

where the superscript on a material property indicates the particular 

stress at which it is to be evaluated. 

Substituting the stress history (36) into equation (6), and using the 

related nonlinear properties, e.g. (37), yields, 

for 0 < t < t 

ilzl  AAU)a, (38a) e = g^A(0)a1 + g*g* AA(^)ax 

\ji  = t/a1 
a 

for t < t < t 

e.  = g2A(0)o2 + g
2[g2ö1AA(*) + (g|a2 - g^AA^-^)] 

i|; = t./a1  + (t-t1 )/a 
1 a 1  ■ 

iM^ = (t-t^/a2 (38b; 

for t < t < t3 

e = g1A(0)a1 + gl[g2a1AA(^) + (g*a2 - g^jAAdM^) 

-(g2°2 " S2ai)M(,|;"*2)] (30C) 

<j,-^2 = (t-t2)/aj 



for t     < t, 

e  = g^AAU)   +   (g2a2  - g2a1)AA(^-^1) 

~(g2°2  "  4Ü1)M(,^~',;2)   "  gj0!^-^ (38d' 

*  =  t^/al   +   (t.-O/a*  +   (t   -t0)/al   +   (t-t.J 
la 2    10 j     <L'       a _> 

-*1  =   (Vtl)/aa +  (t3_t2)/aa +  (t"t; 

i>-i>? =  (t3-t2)/aj +   (t-t3) 

i<)-4>    = t-t 

The actual stress and time values used are o  = 3^60 psi, a  = 6920 psi, 

and t = 1/2 hr, t  = 1 hr, t  = 1.5 hr.  The test was made twice on the 

same 30° specimen at l6H°F and 21/J relative humidity used to characterize 

the material.  The linear creep compliance and the stress-dependent nonlinear 

properties, which we obtained previously from data reduction procedures, are 

used in equations (30) to predict the strain response.  The results for the 

second repetition of this load history,only slightly different from those 

of the first load history, are shown in Figure 19 and seen to agree very 

well with the experimental observations except for the third region 

(t0 < t < t ).  This figure shows that the agreement is much better than 
2       3 

achieved using linear theory. 

The data in Figure 19 were obtained several weeks after the specimen 

was characterized.  Therefore, some of the error can probably be attributed 

to the long rest period and resulting change in properties. 
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Section VI 

CONCLUSIONS 

An appreciable amount of nonlinearity in the transient component of 

strain was found to exist in all specimens, except for those under loading 

parallel to the fibers.  The nonlinear constitutive equation (6) derived 

from thermodynamic theory [l] has been used successfully to characterize 

the glass fiber-epoxy composite under uniaxial loading; although only a 

uniaxial equation has been given here, multiaxial relations have been 

derived [l].  Linear viscoelastic compliances and nonlinear properties 

were evaluated by applying graphical shifting procedures to creep and re- 

covery data.  All three nonlinear properties, gn, g_, and a were found to 
1  _' d a 

be a function of essentially only one mechanical invariant: the average 

octahedral shear stress in the epoxy matrix. 

Such a result seems to indicate uniaxial creep and recovery tests 

may be sufficient to characterize the composite for multiaxial stress appli- 

cations.  However, the conclusion is very preliminary at this time, as 

other functions in [l] may enter and confirmation from a multiaxial-stress 

test program is needed. 

The nonlinear theory used in this report is applied more easily 

than the familiar multiple-integral representation in characterizing a non- 

linear viscoelastic solid.  The single-integral form makes it relatively 

easy to use in engineering stress analysis applications as well.  Moreover, 

the only time-dependent functions which appear in the constitutive theory 

are the linear viscoelastic creep compliances. 



Some error was observed in predicting the angular dependence of the 

compliances and strain response to multiple-step loading.  It is believed 

that possible sources of the error, in addition to spec iinen-to-specimen 

property variations and experimental error, are the method used to estimate 

initial compliance and a gradual change in properties observed for a single 

specimen under repeated loading and unloading. 

Motivated by this finding, a new data reduction procedure has been 

developed without restricting g = 1 [12]; recovery data is utilized in 

estimating the initial compliance.  This new method provides better agree- 

ment with respect to angular dependence of the compliance but does not 

appreciably change the response under multiple-step loading. 

The effect of temperature on material properties is not covered in 

the present report, but [12] does include some results at various tem- 

peratures . 
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APPENDIX I 

On the Application of a Therraodynamic Constitutive 

Equation to Various Nonlinear Materials* 

R. A. Schapery 

ABSTRACT 

The author's thermodynamic constitutive theory for nonlinear visco- 

elastic behavior is extended to account for rate-independent plastic flow 

and for nonlinear creep with strong stress-dependence.  The resulting 

constitutive equation is then applied to several different materials under 

small and large strains in order to bring out the significance of the non- 

linear functions, and to obtain a check on the theory.  History effects 

are accounted for by means of a single integral which is very similar to 

the Boltzmann form in linear theory, and therefore permits easy application 

to the various loading and straining conditions studied.  On the basis of 

physical arguments and some example applications to glassy and polycrystalline 

materials, including fiber-reinforced plastic, it is suggested that nonlinear, 

multiaxial response of these solids can often be described by linear visco- 

elastic equations with an intrinsic time-scale that is affected by mechani- 

cal invariants and temperature; for example, the classical three-dimensional 

stress-strain equations of rate-independent, incremental plasticity and 

nonlinear creep of metals are shown to be included in this description. 

Only a slightly more involved form is needed to characterize a number of 

unfilled and filled soft polymers under finite strain. 

* Presented at the IUTAM Symposium on Thermoinelasticity, East Kilbride, 
Scotland, June 26-28, 1968.  (To be published in Proceedings.)  Work 
was originally published as Purdue University Report No. AA&E3 63-^ 
(June 1968). 
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APPENDIX II 

Thermal Expansion Coefficients of Composite 

Materials Based on Energy Principles* 

R. A. Schapery 

ABSTRACT 

Bounds on effective thermal expansion coefficients of Isotropie and 

anisotropic composite materials consisting of isotropic phases are derived 

by employing extremum principles of thermoelasticity.  Inequalities between 

certain approximate and exact forms of the potential and complementary 

energy functionals are first established.  These inequalities are then 

used in conjunction with a new method for minimizing the difference between 

upper and lower bounds in order to derive volumetric and linear thermal 

expansion coefficients.  Application is made to two- and three-phase iso- 

tropic composites and a fiber-reinforced material.  It is found for some 

important cases that the solutions are exact, and take a very simple form. 

We also show conditions under which the rule-of-mixtures and Turner's 

equation can be used for thermal expansion coefficients.  Finally, simple 

methods for extending all results to viscoelastic composites are indicated. 

«Published in J. Composite Materials, Vol. 2, pp. 380-Uok (July 1968) 
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